Lecture 2

Historical Notes

One of the major problems in which scientists of antiquity were involved
was the study of planetary motions. In particular, predicting the precise
time at which a lunar eclipse occurs was a matter of considerable pres-
tige and a great opportunity for an astronomer to demonstrate his skills.
This event had great religious significance, and rites and sacrifices were
performed. To make an accurate prediction, it was necessary to find the
true instantaneous motion of the moon at a particular point of time. In
this connection we can trace back as far as, Bhaskara II (486AD), who
conceived the differentiation of the function sint. He was also aware that
a variable attains its maximum value at the point where the differential
vanishes. The roots of the mean value theorem were also known to him.
The idea of using integral calculus to find the value of m and the areas
of curved surfaces and the volumes was also known to Bhaskara II. Later
Madhava (1340-1429AD) developed the limit passage to infinity, which is
the kernel of modern classical analysis. Thus, the beginning of calculus goes
back at least 12 centuries before the phenomenal development of modern
mathematics that occurred in Europe around the time of Newton and Leib-
niz. This raises doubts about prevailing theories that, in spite of so much
information being known hundreds of years before Newton and Leibniz,
scientists never came across differential equations. The information which
historians have recorded is as follows:

The founder of the differential calculus, Newton, also laid the foundation
stone of DEs, then known as fluxional equations. Some of the first-order
DEs treated by him in the year 1671 were
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He also classified first-order DEs into three classes: the first class was com-
posed of those equations in which y’ is a function of only one variable, x
alone or y alone, e.g.,

y = f@), ¢ = f) (2.5)
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the second class embraced those equations in which y’ is a function of both
z and y, ie., (1.9); and the third is made up of partial DEs of the first
order.

About five years later, in 1676, another independent inventor of calcu-
lus, Leibniz, coined the term differential equation to denote a relationship
between the differentials dr and dy of two variables x and y. This was
in connection with the study of geometrical problems such as the inverse
tangent problem, i.e., finding a curve whose tangent satisfies certain condi-
tions. For instance, if the distance between any point P(z,y) on the curve
y(z) and the point where the tangent at P crosses the axis of  (length of
the tangent) is a constant a, then y should satisfy first-order nonlinear DE

y = -y (2.6)

a2 — 2
In 1691, he implicitly used the method of separation of variables to show
that the DEs of the form

dx

v = X@Y0) (2.7)

can be reduced to quadratures. One year later he integrated linear homo-
geneous first-order DEs, and soon afterward nonhomogeneous linear first-

order DEs.

Among the devoted followers of Leibniz were the brothers James and
John Bernoulli, who played a significant part in the development of the
theory of DEs and the use of such equations in the solution of physical
problems. In 1690, James Bernoulli showed that the problem of determining
the isochrone, i.e., the curve in a vertical plane such that a particle will slide
from any point on the curve to its lowest point in exactly the same time, is
equivalent to that of solving a first-order nonlinear DE

dy(b*y — a®)'/? = dx a3/, (2.8)

Equation (2.8) expresses the equality of two differentials from which Ber-
noulli concluded the equality of the integrals of the two members of the
equation and used the word integral for the first time on record.

In 1696 John Bernoulli invited the brightest mathematicians of the world
(Europe) to solve the brachistochrone (quickest descent) problem: to find
the curve connecting two points A and B that do not lie on a vertical line
and possessing the property that a moving particle slides down the curve
from A to B in the shortest time, ignoring friction and resistance of the
medium. In order to solve this problem, one year later John Bernoulli
imagined thin layers of homogeneous media, he knew from optics (Fermat’s
principle) that a light ray with speed v obeying the law of Snellius,

sina = Kv,
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passes through in the shortest time. Since the speed is known to be pro-
portional to the square root of the fallen height, he obtained by passing
through thinner and thinner layers

sina = \/% = K+\/29(y — h), (2.9)
1+

a differential equation of the first order. Among others who also solved
the brachistochrone problem are James Bernoulli, Leibniz, Newton, and
L’Hospital.

The term “separation of variables” is essentially due to John Bernoulli;
he also circumvented dz/z, not well understood at that time, by first ap-
plying an integrating factor. However, the discovery of integrating factors
proved almost as troublesome as solving a DE.

The problem of finding the general solution of what is now called Ber-
noulli’s equation,
ady = ypdx+bgy" dx, (2.10)

in which a and b are constants, and p and ¢ are functions of = alone, was
proposed by James Bernoulli in 1695 and solved by Leibniz and John Ber-
noulli by using different substitutions for the dependent variable y. Thus,
the roots of the general tactic “change of the dependent variable” had al-
ready appeared in 1696-1697. The problem of determining the orthogonal
trajectories of a one-parameter family of curves was also solved by John
Bernoulli in 1698. And by the end of the 17th century most of the known
methods of solving first-order DEs had been developed.

Numerous applications of the use of DEs in finding the solutions of ge-
ometric problems were made before 1720. Some of the DEs formulated in
this way were of second or higher order; e.g., the ancient Greek’s isoperimet-
ric problem of finding the closed plane curve of given length that encloses
the largest area led to a DE of third order. This third-order DE of James
Bernoulli (1696) was reduced to one of the second order by John Bernoulli.
In 1761 John Bernoulli reported the second-order DE

2y
"= = 2.11
Y e (2.11)

to Leibniz, which gave rise to three types of curves—parabolas, hyperbolas,
and a class of curves of the third order.

As early as 1712, Riccati considered the second-order DE
fly.y'.y") =0 (2.12)

and treated y as an independent variable, p (= y’) as the dependent vari-
able, and making use of the relationship 3y’ = pdp/dy, he converted the
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DE (2.12) into the form

f (y,p,p(j—z» =0, (2.13)

which is a first-order DE in p.
The particular DE
y' = p(2)y® +q(x)y +r(z) (2.14)

christened by d’Alembert as the Riccati equation has been studied by a num-
ber of mathematicians, including several of the Bernoullis, Riccati himself,
as well as his son Vincenzo. By 1723 at the latest, it was recognized that
(2.14) cannot be solved in terms of elementary functions. However, later
it was Euler who called attention to the fact that if a particular solution
y1 = y1(x) of (2.14) is known, then the substitution y = y; + 2~ ! converts
the Riccati equation into a first-order linear DE in z, which leads to its
general solution. He also pointed out that if two particular solutions of
(2.14) are known, then the general solution is expressible in terms of simple
quadrature.

For the first time in 1715, Taylor unexpectedly noted the singular solu-
tions of DEs. Later in 1734, a class of equations with interesting properties
was found by the precocious mathematician Clairaut. He was motivated
by the movement of a rectangular wedge, which led him to DEs of the form

y = zy + f(y). (2.15)

In (2.15) the substitution p = ¢/, followed by differentiation of the terms
of the equation with respect to x, will lead to a first-order DE in z, p and
dp/dz. Tts general solution y = cx + f(c) is a collection of straight lines.
The Clairaut DE has also a singular solution which in parametric form can
be written as x = —f'(t), y = f(t) —tf'(t). D’Alembert found the singular
solution of the somewhat more general type of DE

y = zg9(y') + f(/), (2.16)
which is known as D’Alembert’s equation.

Starting from 1728, Euler contributed many important ideas to DEs:
various methods of reduction of order, notion of an integrating factor, the-
ory of linear equations of arbitrary order, power series solutions, and the
discovery that a first-order nonlinear DE with square roots of quartics as
coefficients, e.g.,

(1—ah)2y + (1-y"H)2 =0, (2.17)

has an algebraic solution. Euler also invented the method of variation
of parameters, which was elevated to a general procedure by Lagrange in
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1774. Most of the modern theory of linear differential systems appears
in D’Alembert’s work of 1748, while the concept of adjoint equations was
introduced by Lagrange in 1762.

The Jacobi equation
(a1 + b1z + c1y)(zdy — ydx) — (az + bex + c2y)dy + (a3 + bsx + c3y)dx = 0

in which the coefficients a;, b;, ¢;, i = 1,2,3 are constants was studied
in 1842, and is closely connected with the Bernoulli equation. Another
important DE which was studied by Darboux in 1878 is

—Ldy+ Mdzx + N(zdy — ydz) = 0,
where L, M, N are polynomials in z and y of maximum degree m.

Thus, in early stages mathematicians were engaged in formulating DEs
and solving them, tacitly assuming that a solution always existed. The
rigorous proof of the existence and uniqueness of solutions of the first-order
initial value problem (1.9), (1.10) was first presented by Cauchy in his lec-
tures of 1820-1830. The proof exhibits a theoretical means for constructing
the solution to any desired degree of accuracy. He also extended his process
to the systems of such initial value problems. In 1876, Lipschitz improved
Cauchy’s technique with a view toward making it more practical. In 1893,
Picard developed an existence theory based on a different method of suc-
cessive approximations, which is considered more constructive than that
of Cauchy—Lipschitz. Other significant contributors to the method of suc-
cessive approximations are Liouville (1838), Caqué (1864), Fuchs (1870),
Peano (1888), and Bocher (1902).

The pioneering work of Cauchy, Lipschitz, and Picard is of a qualitative
nature. Instead of finding a solution explicitly, it provides sufficient con-
ditions on the known quantities which ensure the existence of a solution.
In the last hundred years this work has resulted in an extensive growth
in the qualitative study of DEs. Besides existence and uniqueness results,
additional sufficient conditions (rarely necessary) to analyze the proper-
ties of solutions, e.g., asymptotic behavior, oscillatory behavior, stability,
etc., have also been carefully examined. Among other mathematicians who
have contributed significantly in the development of the qualitative theory
of DEs we would like to mention the names of R. Bellman, I. Bendixson,
G. D. Birkhoff, L. Cesari, R. Conti, T. H. Gronwall, J. Hale, P. Hart-
man, E. Kamke, V. Lakshmikantham, J. LaSalle, S. Lefschetz, N. Levin-
son, A. Lyapunov, G. Peano, H. Poincare, G. Sansone, B. Van der Pol,
A. Wintner, and W. Walter.

Finally the last three significant stages of development in the theory
of DEs, opened with the application of Lie’s (1870-1880s) theory of con-
tinuous groups to DEs, particularly those of Hamilton—Jacobi dynamics;



12 Lecture 2

Picard’s attempt (1880) to construct for linear DEs an analog of the Galois
theory of algebraic equations; and the theory, started in 1930s, that paral-
leled the modern development of abstract algebra. Thus, the theory of DEs
has emerged as a major discipline of modern pure mathematics. Neverthe-
less, the study of DEs continues to contribute to the solutions of practical
problems in almost every branch of science and technology, arts and social
science, and medicine. In the last fifty years, some of these problems have
led to the creation of various types of new DEs, some which are of current
research interest.



