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Abstract

It is a common medical folk-practice for parents to encourage their children to
contract certain infectious diseases while they are young. This folk-practice is
controversial, in part because it contradicts the long-term public health goal of
minimizing disease incidence. We study an epidemiological model of infectious
disease in an age-structured population where virulence is age-dependent and show
that, in some cases, the optimal behavior will increase disease transmission. This
provides a rigorous justification of the concept of “endemic stability”, and
demonstrates that folk-practices may have been historically justified.

Running title: Optimal Transmission
Key words: age-dependent virulence, population games, optimal behavior

1 Introduction

The transmission rate of a disease is a product of the rate at which susceptible
individuals come into contact with infectious individuals and the probability of
transmission during a contact. The transmission probability during a contact is primarily
determined by the mode of transmission. The contact rate depends on the behaviors of
infected, susceptible, and sometimes intermediary individuals. Cases like that of Mary
Mallon, “Typhoid Mary”, show how an infected individual’s behavior can greatly
increase a contact rate (Leavitt, 1997). A disease like rabies can cause behavior changes
in infected individuals that increase the contact rate (Murray, 1993). The contact rates
of sexually transmitted diseases are heavily influenced by the behaviors of susceptible
individuals. In hospitals, contact rates for some diseases are strongly influenced by the
hand-hygiene practices of doctors (Grundmann et al., 2002). Del Valle et al. (2005) have
shown that behavioral changes can effectively reduce the severity of a smallpox outbreak.

Given that individuals have some control over their contact rates, should they
choose behaviors that increase it or decrease it? At first glance, this appears to be a
trivial question. Illness is bad, so people should behave to lower their contact rates and
avoid infection. However, in some cases it might be better to accept a mild sickness
today to avoid a severe illness in the future. We will show that such trade-offs can arise
when disease virulence is age-dependent. If the morbidity or mortality of a disease is
positively correlated to age of infection, incremental reductions in transmission can
increase the risks and costs associated with infection.

This problem was pointed out by (Coleman et al., 2001) and may be relevant to
numerous diseases. To explore in greater detail the relationship between age-dependent
virulence and behavior choices that affect transmission, we pose a population game
based on a compartmental SIR model that divides the population based on their
susceptible, infected or recovered (and immune) status. We then present a model of
transmission in a host population with two age classes, and show that both high and low
transmission rates can be Nash equilibria of individual utility, depending on the contact
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rate’s plasticity. One Nash equilibrium minimizing transmission exists in cases where
virulence in juveniles is higher than virulence in adults but two Nash equilibria can
coexist under conditions of reduced virulence in juveniles. When virulence in juveniles is
less than that in adults, one of these equilibria will exist at the maximum allowed
transmission rate, at which most individuals are infected as juveniles and avoid infection
as adults. The results show that there are situations where the optimal behaviors of
individuals facilitate the transmission of a disease.

2 Model

Our goal is to determine optimal behavior for an individual in a population where
everybody else is also pursuing optimal behavior. We will pose this problem as a
population game. The idea is to simultaneously model the problem at the scales of both
the population and the individual. At the population scale, the dynamics of the
population’s state vector n are described by a system of differential equations

dn

dt
= G (n, π) (1)

that depend on the average behavior π of individuals in the population. At the
individual-scale, the stochastic dynamics of the state of an individual are described by a
continuous-time Markov process

dp

dt
= Q (n, π)p, (2)

where p is a probability distribution over possible states and Q is a transition-rate
matrix that depends on the population’s state n and the individual’s behavior π. Using
Eq. (1), we can determine the equilibrium-state n∗(π) of the population as a function of
the average behavior π. Markov decision process theory (Howard, 1960) then tells us
that the expected lifetime utility U of a behavior π to an individual is given by

U(π; π) = vT [δI−Q(n∗(π), π)]−1 p(0), (3)

where p(0) is the initial probability distribution for an individual’s state, v is the
expected utility gain per unit time for each state, and δ is the discounting rate of future
returns. Here we take the discount rate to be the population’s proliferation rate Reluga
et al. (2007). Details of the general theory are described in Appendix A.

We first construct a population-scale model of an infectious disease with
age-dependent virulence. Consider a population subdivided into juvenile (denoted by
subscript j) and adult (subscript a) age classes. Within each age class, individuals may
be susceptible (Sj and Sa), infected (Ij and Ia), or immune (Rj and Ra). Individuals
transition among these six states through the processes of aging, death, birth, infection,
and recovery (see Figure 1). Individuals age from juvenile to adult at rate f , while
adults die at rate da, juveniles die at rate dj, and susceptible juveniles are produced by
healthy adults at rate r. To maintain as simple a model as possible, we have chosen a
formulation of transmission with proportional mixing and standard incidence where
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contact rates are independent of age class. At the population scale, the transmission rate
β depends on the resident population’s behavior π. The duration of infection is
exponentially distributed with expectation 1/γ. A fraction kj of infected juveniles die
and a fraction ka of infected adults die; the remaining fractions, 1− kj and 1− ka survive
infection and have life-long immunity against reinfection. Mathematically,

Ṡj = (−f − dj)Sj + r (Sa +Ra)− λSj, (4a)

İj = (−f − dj) Ij + λSj − γIj, (4b)

Ṙj = (−f − dj)Rj + (1− kj) γIj, (4c)

Ṡa = fSj − daSa − λSa, (4d)

İa = fIj − daIa + λSa − γIa, (4e)

Ṙa = fRj − daRa + (1− ka) γIa, (4f)

where the force of infection

λ = β(π)
Ij + Ia
N

, (4g)

and

N = Sj + Ij +Rj + Sa + Ia +Ra (4h)

is the population size.
The system of ordinary differential equations in Eq. (4) is homogeneous; the rate

of change in the state variables is proportional to the population size. In homogeneous
systems, solutions may grow without bound or decay toward zero depending on initial
conditions and parameter values (Hadeler et al., 1988; Hadeler, 1992). Homogeneous
models are a reasonable approximation to the dynamics of human populations that
exhibit sustained growth.

For System (4), there are two densities

n∗ =
[
S∗j , I

∗
j , R

∗
j , S

∗
a , I
∗
a , R

∗
a

]
(5)

with

S∗j + I∗j +R∗j + S∗a + I∗a +R∗a = 1 (6)

describing homogeneous solutions of the form n∗N(0)eδt : a disease-free density n∗DF in
which there are no infected or resistant individuals, and an endemic density n∗E in which
there are both infected and resistant individuals (Busenberg and van den Driessche,
1990). For humans, the disease-free density corresponds to a growing population, but is
only stable against the introduction of infection when the basic reproduction number of
disease

R0 =
β(π)

[
(γ + f)

(
S∗j + S∗a

)
+ djS

∗
a + daS

∗
j

]
(γ + f + dj) (γ + da)

< 1. (7)
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Figure 1: A hypergraph representation of the reactions that compose Eq. (4). All transition
steps are linear except for the transmission process, which requires the interaction of
susceptible and infected individuals.
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R0 is the expected number of new infections generated per infection in a naive
population (Anderson and May, 1991). When R0 > 1, the disease-free density is
unstable and the endemic density appears to be stable in numerical simulations. The
value for R0 was calculated using the methods described by van den Driessche and
Watmough (2002), but the approximation R0 ≈ β(π)/γ is a good approximation when
the time scales of aging and death are much longer than the time scales of infection. The
endemic density has a population proliferation rate δE that is slower than that of the
disease-free proliferation rate δDF due to disease-induced death and transient infertility.
In cases of high transmissibility and low survival rates, population size may decline.

Along with the population-scale model in System (4), there is an individual-scale
Markov model for the state-dynamics of an individual where the transition rates depend
on the individual’s behavior. All individuals enter the population in the susceptible
juvenile state, so their initial state is given by

p(0) = [1, 0, 0, 0, 0, 0]T , (8)

and the transition rates between life-history states are static, given by

Q(n∗, π) =


−f − dj − λ∗ 0 0 0 0 0

λ∗ −f − dj − γ 0 0 0 0
0 (1− kj) γ −f − dj 0 0 0
f 0 0 −da − λ∗ 0 0
0 f 0 λ∗ −da − γ 0
0 0 f 0 (1− ka) γ −da

 , (9a)

where

λ∗ = β(π)
(
I∗j + I∗a

)
(9b)

and π is the individual’s behavior. The life-history dynamics of an individual with an
invading behavior are similar to the life-history dynamics of an individual with the
resident behavior, except that the invading behavior π alters that individual’s risk of
contracting disease. The term β(π) can be interpreted as both the transmission rate and
the acquisition rate of disease, since transmission by one individual corresponds to
acquisition by another.

Finally, we specify the instantaneous utility gains of each state. The healthy adult
states Sa and Ra have equal utility gains. Neither juvenile nor infected states have any
instantaneous utility gain. To normalize utility, we measure it in terms of reproductive
rate, so the vector of state-dependent utility gains is

vT = [0, 0, 0, r, 0, r] . (10)

This model supplies the information needed to calculate utility using Eq. (3).
Unless otherwise specified, we use the following parameter values, scaled to adult

death rate, for simulations and figures: r = 2, f = 4, dj = 0, da = 1, γ = 1000, kj = 0.01,
and ka = 0.8. The value of γ is relatively large because the duration of infection is
usually very short compared to the expected lifetime of an individual.
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Figure 2: Proliferation rate δ(π) of the population, depending on the transmission rate and
virulence of disease. In cases where infection has higher virulence in juveniles than adults
(top), behaviors that increase transmission will always slow population proliferation. But
in cases where infection has higher virulence in adults (bottom), intermediate transmission
rates slow proliferation the most. kj = 0.6 ≥ ka (top) and ka = 0.6 ≥ kj (bottom).
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3 Results

As seen in Figure 2, the asymptotic proliferation rate δ(π) of the population
depends on both the transmission rate and the virulence of disease. If virulence in
juveniles is greater than virulence in adults, then populations grow fastest when the
basic reproduction number of disease R0 ≈ β/γ < 1. Increased transmission erodes
population proliferation. If virulence in juveniles is less than virulence in adults, then the
fastest growing populations are still those for which R0 < 1 but behaviors that increase
transmission may increase the population proliferation rate, depending on the resident
population’s behavior prior to the initial introduction of the disease.

However, the asymptotic proliferation rate is a measure of population success, not
individual success. Local maxima in the proliferation rate may be unstable to invasion
by individuals with alternative behaviors. Exploration of the stability of behaviors
against invasion leads to the concept of a Nash equilibrium. Consider a large (effectively
infinite) population into which we introduce a small number of individuals with a
strategy1 that differs from the general population’s resident strategy. The new strategy
can “invade” the population if it has greater utility than the resident strategy
(Maynard Smith, 1982). A resident strategy is a Nash equilibrium if no alternative
strategy has greater utility than the resident strategy (Hofbauer and Sigmund, 1998).
Mathematically, the population is at Nash equilibrium against alternative strategies π if

U(π; π) ≥ U(π; π). (11)

The resident strategy π is a strict Nash equilibrium if condition (11) is a strict inequality
for all strategies π 6= π (McNamara et al., 2001). This last requirement is stricter than
the standard conditions of an evolutionarily stable strategy (ESS) (Maynard Smith,
1982), but will be sufficient for our exploration since a strict Nash equilibrium is always
an ESS (Hofbauer and Sigmund, 1998).

To find the stable optimal behaviors in the population, we consider the case
where an invader’s transmission rate, β(π), deviates from the resident transmission rate,
β(π), and determine the strict Nash equilibria of Eq. (3). Let us assume that
transmission rates can range between βmin and βmax, depending on the behavior.
Individuals with the resident behavior always have neutral utility (U(π; π) = 1). Suppose
the virulence in juveniles is less than the virulence in adults. From the invasibility plot
in Figure 3A, we see that if βmin < γ, every behavior π∗ with β(π∗) ∈ [βmin, γ] is a Nash
equilibrium. If βmin > γ but βmin and βmax are sufficiently small, then β(π∗) = βmin is the
unique pure Nash equilibrium. If βmin is sufficiently large, then β(π∗) = βmax is the
unique pure Nash equilibrium. For intermediate βmin, both β = βmin and β = βmax are
pure-strategy Nash equilibria. When juvenile virulence is higher than adult virulence
(see Figure 4), an individual’s optimal behavior always minimizes his transmission rate,
independent of the resident population’s transmission rate β(π). Thus, behaviors π∗ such
that β(π∗) = βmin are always Nash equilibria.

Thus, depending on a population’s initial state and potential variations in
transmission, there are circumstances where reduced juvenile virulence favors behaviors
that increase transmission.

1Population games typically use the term “strategy” which we use interchangeably with “behavior”.

8



Nash Eq. Nash Eq.

Nash Eq.

Nash Eq.

0.9

0.9

1.1

1.1

1

1

1

Individual Transmission (          )

P
op

ul
at

io
n 

T
ra

ns
m

is
si

on
 (

   
   

   
)

Individual Transmission (          )

P
op

ul
at

io
n 

T
ra

ns
m

is
si

on
 (

   
   

   
)

Individual Transmission (          )

P
op

ul
at

io
n 

T
ra

ns
m

is
si

on
 (

   
   

   
)

Individual Transmission (          )

P
op

ul
at

io
n 

T
ra

ns
m

is
si

on
 (

   
   

   
)

Individual Transmission (          )

P
op

ul
at

io
n 

T
ra

ns
m

is
si

on
 (

   
   

   
)

AA B

C D

β(π) / γ

β(
π

) /
 γ

_

β(π) / γ

β(
π

) /
 γ

_

 8

 6

 4

 2

 1

 0
 0  1  2  4  6  8

β(π) / γ

β(
π

) /
 γ

_
 8

 6

 4

 2

 1

 0
 0  1  2  4  6  8

β(π) / γ

β(
π

) /
 γ

_

β(π) / γ

β(
π

) /
 γ

_
 8

 6

 4

 2

 1

 0
 0  1  2  4  6  8

 8

 6

 4

 2

 1

 0
 0  1  2  4  6  8

Figure 3: Pairwise invasibility plots of individual utility U(π; π) when juvenile virulence is
reduced. The contour levels are identical in all four plots. (A) If β(π) < γ (approximately),
disease is transient and the utility U = 1 for all β(π). If β(π) > γ, the utility as a function
of the individual behavior decreases from a maximum for β(π) = 0 to a minimum and then
increases again. The unique isolated singular point is unstable. The dotted boxes in plots
B, C, and D represent example boundaries βmin and βmax for feasible transmission rates.
The Nash equilibria are points where the utility is maximized over β(π) and β(π) = β(π).
Depending on the values of βmin and βmax, β(π) = βmin may be the only pure Nash
equilibrium (B), β(π) = βmax may be the only pure Nash equilibrium (C), or both may
be pure Nash equilibria (D). Parameter values : r = 2, f = 4, dj = 0, da = 1, γ = 1000,
kj = 0.01, ka = 0.8.
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Figure 4: Pairwise invasibility plots of individual utility U(π; π) when juvenile virulence
is elevated. If β(π) > γ, the individual utility decreases monotonely from a maximum
for β(π) = 0. If β(π) < γ (approximately), U(π; π) = 1. The dotted box represents
example boundaries βmin and βmax of feasible transmission rates. There is always a Nash
equilibrium corresponding to behaviors that minimize transmission. Parameter values :
r = 2, f = 4, dj = 0, da = 1, γ = 1000, kj = 0.8, ka = 0.01.
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Juvenile Juvenile Adult
Disease Host Age Fatality (kj) Fatality (ka) Reference

Chickenpox Humans < 20 years 1.4× 10−5 30.9× 10−5 Preblud (1986)

Rabbit
haemorrhagic Rabbits < 8 weeks 0.6 0.9 Morisse et al. (1991)
disease

Poliomyelitis Humans < 16 years 0.0095 0.083 Weinstein et al. (1952)

Rotavirus Humans < 5 years 0.0034 ≈ 0 Parashar et al. (2003)

Table 1: Documented age-dependent differences in virulence, measured in terms of the
case-fatality probability, for 4 diseases.

4 Discussion

Our analysis suggests that when virulence decreases with age, the optimal
behaviors for individuals will minimize transmission. Conversely, when virulence
increases with age, the best behaviors may minimize or maximize transmission
depending on the plasticity of the contact rate.

Approximate age-dependent case-fatality probabilities for 4 diseases are shown in
Table 1. Some diseases like rotavirus have elevated juvenile virulence, but a number of
human and animal diseases have reduced juvenile virulence that can encourage behaviors
increasing transmission (Coleman et al., 2001). Classic childhood viral diseases such as
mumps and chickenpox exhibit increased morbidity and mortality in older patients
(Mandell et al., 2005). Similarly, prior to its control through vaccination, poliomyelitis
may have exhibited a higher case fatality rate in older age groups (Weinstein et al., 1952;
Paul, 1971), although trends in age-specific incidence are more difficult to interpret
(Nathanson and Martin, 1979).

Our arguments also apply to cases where utility is measured in terms of reduced
health risks during pregnancy. Rubella, erythema infectiosum, and mumps all increase
fetal death rates if initially contracted during pregnancy (Mandell et al., 2005).
Increasing transmission beyond a certain level will decrease the probability of acquiring
the infection during reproductive years, decreasing risks during pregnancy. Thus,
acquisition of these diseases during childhood can be beneficial.

Humans have previously implemented behavioral solutions to problems of
increased morbidity with age due to a reduction in transmission. Intentionally gathering
infected and susceptible children for “chickenpox parties” reduces adult incidence (Pado,
2005). Similarly, public-health officials have recognized the danger in reducing
transmission and thereby increased age of acquiring childhood diseases: in 1993 Greece
experienced an epidemic of congenital rubella secondary to many years of partial vaccine
coverage (Panagiotopoulos et al., 1999). Consequently, the World Health Organization
advises that nations consider vaccination programs that only target women of
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childbearing age, or in some cases, completely forego rubella vaccination (World Health
Organization, 2000). Indeed, as Anderson and May (1991) point out, contrary to the
usual ideal vaccination policy from an individual’s perspective, that every one but that
individual be vaccinated, for rubella, the ideal policy is that no one is vaccinated except
the individual in question.

Our work highlights how greater disease transmissibility may in some cases be
beneficial. In the case of childhood diseases, contracting the infection early in life may
carry a reduced cost, and a behavior to facilitate transmission can be stable against
invasion by behaviors that reduce transmission. But many situations, both applied and
theoretical, are unexplored. Further work may include a careful application to specific
childhood diseases using contemporary and historical data, as well as incorporation of
sociological studies of parental perceptions of disease.
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A Methods

Here, we review one formulation of a population game, generalizing that used by
van Baalen (1998). Let the vector n(t) be the abundances of individuals from the
population in each possible life-history state and the vector p(t) be a probability density
over the life-history state space for an individual with the invading strategy at time t.
We will refer to p(t) as the individual-scale state since it represents the life-history state
of a single individual, and we will refer to n(t) as the population’s state because it is the
total of all individuals’ states. The dynamics of the population’s state are governed by a
system of differential equations

dn

dt
= G (n, π) , (12)

while the dynamics of the individual-scale state with the invading strategy are governed
by a continuous time Markov process

dp

dt
= Q (n, π)p. (13)

Here, G is a nonlinear vector-valued function and Q is the transition-rate matrix of the
life-history process. The population-scale dynamics do not depend on the invading
strategy π because the strategy is rare. In this formulation, the individual-scale
dynamics only depend on the resident strategy π indirectly through the population’s
state n, but there may be biological situations where this restriction needs to be relaxed.

Because of the complexity of utility formulation when populations and
environments exhibit ongoing oscillations and disturbances (Metz et al., 1992;
McNamara, 1997; Brommer et al., 2000), we will restrict our analysis to cases where
dynamics are at equilibrium. Let n∗(π) be an equilibrium density of the population
state, such that

G(n∗, π) = δn∗ (14)

where δ is the population’s proliferation rate. Note that the proliferation rate δ
implicitly depends on the resident strategy π. The individual-scale dynamics will be at
equilibrium if Eq. (14) is satisfied and either δ = 0 or the transition matrix Q is a
zeroth-order homogeneous function of n such that

Q(eδn∗, π) = Q(n∗, π). (15)

When the population state is at an equilibrium density, we can calculate the
utility in a manner analogous to the optimization criteria used in economics and
operations research (Arrow and Kurz, 1970). The utility of an individual with strategy π
is given by the discounted reproduction number

U(π; π) =

∞∫
0

e−δtvTp(t) dt, (16)
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where v is a vector of state-dependent utility gains per unit time and δ is the
population’s proliferation rate. The proliferation rate δ acts to discount future
reproduction relative to current returns Reluga et al. (2007). The individual-scale state
equation can then be solved explicitly in terms of the matrix exponential and the initial
state p(0), allowing us to calculate utility of an invading behavior.

U(π; π) =

∞∫
0

vTet(Q
∗−δI)p(0) dt = vT [δI−Q∗]−1 p(0), (17)

with

Q∗ = Q (n∗(π), π) , (18)

provided the Perron–Frobenius eigenvalue of Q∗ is less than δ. The resident strategy
always has a utility of one because it is neither an inferior or superior competitor
compared to itself. Only strategies with a utility U(π; π) > 1 are improvements over the
resident behaviors and will increase in frequency in the population. If the resident
strategy is a strict Nash equilibrium, all alternative strategies must have a utility less
than one.
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