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ABSTRACT

Organismal movement can take on a variety of spatial and temporal20

forms. These forms depend in part on the type and scale of environment

experienced as well as the internal state of the individual. However, indi-22

viduals experiencing seemingly the same environment on the same time

scale can display different movement strategies. Here we consider the24

case where movement is costly and individuals must return to a common

breeding ground annually to reproduce. We derive the optimal movement26

strategy, given specific movement costs and environmental resource dis-

tributions. We find, intuitively, that large resource clines favor migratory28

behavior, and small resource clines favor residential behavior. However

we also show that when resource clines are sharp, migrants and residents30

can coexist with each exploiting a locally optimal behavior. This can be

interpreted as an example of partial migration (if migrants and residents32

are members of the same species). Alternatively, this can also be inter-

preted as two recently divergent species coexisting on a single resource,34

using different movement strategies to share the niche. We conclude with

a discussion of density-dependent pressures on movement, including local36

resource depletion.
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1. Introduction38

Movement is ubiquitous among living organisms (particularly animals) and is

vital for the long-term persistence and survival of any population (Hanski 1999). A40

large diversity of movement patterns are found in nature, spanning a range of

temporal and spatial scales. These can vary from e.g. foraging movements of42

nematodes Caenorhabditis elegans on the scale of minutes and centimeters

(Pierce-Shimomura et al. 1999) to e.g. migrations of Arctic terns (Sterna44

paradisaea) which travel almost from pole to pole and back again over the course of

a year (Egevang et al. 2010). At its core, movement is an individual behavior46

(Kennedy 1985) and can be thought of as an adaptive response to conditions, both

external and internal (Cresswell et al. 2011; Clobert et al. 2012). Intuitively,48

different movement types can be favored by different environments, the same

environment experienced on different scales, or by individuals with different50

abilities or internal states. However, particularly intriguing are cases where the

same environment experienced by similar individuals on similar scales appears to52

select for different movement strategies.

One common example of coexistence of movement patterns is partial migration54

where some individuals in a population migrate in a given season while others do

not (Lundberg 1988). Partial migrations can be clustered among three distinct56

types (Shaw and Levin 2011): non-breeding partial migration where migrants and

non-migrants breed together but spend the non-breeding (e.g. winter) season apart;58

breeding partial migration where migrants and non-migrants spend the

non-breeding season together and breed apart; and skipped-breeding partial60

migration where individuals must migrate to breed and non migrants do not breed

that year (Chapman et al. 2011; see Fig. 1 in Shaw and Levin 2011). In the case of62

skipped-breeding partial migration, individuals that do not migrate can potentially

accumulate extra energy to spend on reproduction in future years (Shaw and Levin64

2011, 2013). In this case migrating and non-migrating individuals may differ in
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their level of energy stores (e.g. Thorpe 1994; Caut et al. 2008) thus the66

coexistence of different movement types can be accounted for by individuals

differing in internal state.68

However, the cause of coexistence between migrant and non-migrant

individuals in the cases of non-breeding and breeding partial migration is less clear.70

The first theoretical explanations of partial migration relied on uncertainty in

survival during the non-breeding period to explain the coexistence of migrant and72

non-migrant types (Cohen 1967; Lundberg 1987). Kaitala et al. (1993)

demonstrated theoretically that non-breeding partial migrations could be74

maintained by separate density-dependent regulation of migrant and non migrant

types during the non-breeding season, without invoking environmental uncertainty.76

More recent models have focused on combinations of density-dependent,

density-independent, and stochastic factors in maintaining partial migration78

(Griswold et al. 2010; Vélez-Espino et al. 2013). In the case of breeding partial

migrations, Taylor and Norris (2007) determined that density-dependence during80

the non-shared season is necessary for the coexistence of migrant and non-migrant

types.82

All of these models of partial migration include space only implicitly. Since

migration is fundamentally an adaptive response to spatially distributed resources84

(Cresswell et al. 2011), spatially explicit models may provide insights that spatially

implicit ones cannot. Furthermore, existing partial migration models also only86

indirectly consider ecological conditions as experienced through survival. Migration

appears to be picked up and dropped over short evolutionary time scales suggesting88

that current populations are migrant or resident based on existing (or recent)

ecological conditions (Alerstam et al. 2003). Therefore by explicitly considering the90

ecological conditions that individuals face (rather than indirect effects through

survival) we may gain a deeper understanding of the conditions favoring migrant92

and non-migrant strategies and potentially how changes in conditions may favor
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switches in strategies adopted by individuals.94

In a recent paper (Reluga and Shaw 2014), we described how the tendency of

some species to migrate could be understood in a spatially explicit setting as fitness96

optimization balancing movement costs with foraging success on a single resource.

However, that analysis was limited mostly to numerical results. In this paper, we98

present exact closed-form solutions for optimal migration on a stationary resource

cline when reproduction is constrained to occur annually on an isolated breeding100

ground. We find that some ecological conditions favor migration, others favor

residency, and a subset of conditions support coexistence between resident and102

migratory strategies. This scenario illustrates how seasonal constraints on life

history and in combination with costly movement can bifurcate the niche space,104

allowing for the potential co-existence of resident and migratory subpopulations

(partial migration) or the coexistence of two species with different movement types,106

on a single resource. We conclude with a consideration of density-dependent effects.

These results provide further evidence that partial migrations can evolve under108

local density dependence even without environmental variation.

2. Model110

In an idealized evolutionary model of migration, we look at the case where an

individual’s reproductive success is determined by her foraging success over a112

lifetime, minus energy expenditures. Consider a semelparous species in a

1-dimensional habitat with a shared breeding ground at location x = 0. Adults are114

obligated to return to the breeding ground every year (or more generally, every T

time units) to reproduce. Between breeding events, an individual may die with116

mortality risk δ per unit time, independent of location, behavior, state, or time of

year. The reproductive success of surviving individuals depends on foraging success118

minus expenditures. When forage abundance is described by a resource distribution

Θ(x, t) in space and time, and energy expenditure depends only on the speed of120
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movement, given by γ(ẋ) where ẋ is the individual’s velocity, then the fitness of an

individual moving along a path x(t) over its lifetime, with x(0) = x(T ) = 0, can be122

represented by the discounted reproductive value

Rd := e−δT
∫ T

0

[Θ(x(t), t)− γ(ẋ(t))] dt. (2.1)

For further discussion of the motivation and use of the discounted reproductive124

number, see Reluga et al. (2009); Thieme (2009); McNamara et al. (2001).

The optimal migration path x(t) is the one that maximizes Rd. Using standard126

methods and results from optimal control theory (Reluga and Shaw 2014), we can

deduce that the optimal path can be found by identifying a velocity u∗(t) such that128

u∗ = max
u

λu− γ(u), (2.2a)

ẋ = u∗, (2.2b)

−λ̇ =
∂Θ

∂x
, (2.2c)

with the breeding constraint implying the boundary conditions x(0) = x(T ) = 0.

Here, λ(t) is an adjoint variable representing the instantaneous value of movement.130

Our model is completed by specifying the energy expenditures γ(u) and the

resource distribution Θ(x, t). Although there are more complex and accurate132

models of energy expenditure through movement (Hein et al. 2012), we will adopt a

simplified version capturing some basic features and allowing us to obtain exact134

solutions. Suppose the instantaneous energy use of migration is proportional to the

speed of movement but with a hard upper bound on maximum speed, so136

γ(u) =


|u
f
| if |u| ≤ umax,

∞ otherwise.

(2.3)

where f is the movement efficiency parameter and umax is the maximum speed.

To illustrate how spatial heterogeneity in resource distribution and spatial138

constraints on reproduction can create bi-modality in fitness, we will use a simple
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resource cline. Define a resource distribution that is a static logistic function;140

Θ(x, t) := ψ(x) =
(A+ Amin) + ek(s−x)Amin

1 + ek(s−x)
(2.4)

with height parameters A > 0, position-shift parameter s, and shape parameter

k > 0. The geometry of this cline assumption includes local domains that are flat,142

linear, concave, and convex, so we can explore most of the range of possible shapes

that come to mind.144

This completely specifies our model, with parameters and their units

summarized in Table 1.146

3. Analysis

The structure of this system can be represented in terms of five dimensionless

groups

Â :=
Af

umax

, Âmin :=
Aminf

umax

, δ̂ := Tδ, ŝ :=
s

Tumax

, k̂ := kTumax

while taking our system variables

t̂ :=
t

T
, x̂ :=

x

Tumax

, û :=
u

umax

,

so without loss of generality, we assume the remaining three parameters are148

normalized to T = 1, f = 1, umax = 1. The dimensional analysis shows the

time-scale is most naturally measured in terms of the time between breeding events150

(T ), spatial scales are naturally measured in terms of the maximum distance that

can be traversed between breeding events (Tumax), and increasing the amplitude of152

the gradient (A) is equivalent to a proportional increase in the efficiency of

movement (f).154

Applying System (2.2) with Eqs. (2.3) and (2.4), any locally optimal
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Table 1: Model parameters and units.

Symbol Interpretation Units

t time time

x(t) animal position distance

u(t) animal velocity distance per time

δ discount rate per time

T annual cycle length time

γ(ẋ) movement expenditures energy per time

f movement efficiency distance per energy

umax maximum speed distance per time

ψ(x) resource distribution energy per time

A total resource variation energy per time

Amin resource minimum energy per time

s resource distribution shift distance

k resource distribution shape per distance
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movement path must satisfy the first-order conditions156

ẋ = u∗(λ), x(0) = x(1) = 0, λ̇ = −ψ′(x) =
−Akek(s−x)

(ek(s−x) + 1)
2 , (3.1a)

with u∗(λ) =



1 if λ > 1,

[0, 1] if λ = 1,

0 if −1 < λ < 1,

[−1, 0] if λ = −1,

−1 if λ < −1.

(3.1b)

System (3.1) specifies an autonomous, two-dimensional boundary-value

problem that can be analyzed in a phase-plane. From Figure 1, we discover that158

the optimal path must have the very simple piecewise form

x(t) = min

(
z,

1

2
−
∣∣∣∣t− 1

2

∣∣∣∣) , (3.2)

where z, the maximum migration distance traveled by an individual, is some real160

number satisfying 0 ≤ z ≤ 1/2. The reproductive value under Eq. (2.4) as a

function of z is162

Rd(z) = e−δ
{

(1− 2z)ψ(z)− 2z + 2

∫ z

0

ψ(t)dt

}
(3.3)

= e−δ
{

2z(A− 1) +
A (1− 2z)

ek(s−z) + 1
+

2A

k
log

(
ek(s−z) + 1

eks + 1

)
+ Amin

}
. (3.4)

From Eq. (3.4), locally and globally optimal migration strategies can be determined

exactly for all parameter values. An example is shown in Figure 2. In general,164

there may be more than 1 local maximum in the reproductive number (see

Figure 3). Note that while resource minimum Amin appears in Rd, it does not166

change the locations of any resource maxima.

When the shape parameter k is small such that the curvature is small, the168

resource gradient over [0, 1/2] can be approximated by a line. Let z∗ represent the

migration distance that maximizes the reproductive value. Under a linear170
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Fig. 1.— Direction field for the orbits of System (3.1). The velocity ẋ shows jumps

when the movement-value λ = ±1, while the rate of change in the movement-value

λ̇ varies smoothly as the displacement x gets larger. Optimal paths correspond to

orbits with the boundary conditions x(0) = x(1) = 0. In this case, there are three

such orbits, two local maxima (red dotted) and one saddle point (blue dashed).

Parameter values: A = 50, s = 0.7, k = 10.
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Fig. 2.— Plot of a near-linear resource distribution (top), one period of the corre-

sponding optimal migration strategy (middle), and the fitness of candidate migration

strategies (Eq. (3.2)) as a function of maximum migration distance z as given by

Eq. (2.1) (bottom). The resource gradient (about 5) is large enough to offset the

costs of movement. Parameter values A = 20, k = 1, s = 0.1.
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Fig. 3.— These plots show the nonlinear dependence of the discounted reproductive

value Rd(z) on the maximum migration distance z for three cline shapes. When

the resource cline is shallow (left, k = 1/10), reproductive value declines monotonely

with migration distance. For a moderate linear cline (middle, k = 1), an intermediate

migration distance dominates. For a steeply accelerating cline (right, k = 10), there

can be two local optima; z = 0 has become a local maximum because the benefits of

movement only come to fruition if a relatively flat region of the resource cline is fully

crossed to reach a regions of higher resource concentration. Parameters: A = 50,

Amin = 0, s = 0.7.
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approximation ψ(x) ≈ ψ(0) + ψ′(0)x, the reproductive value

Rd(z) ≈ e−δ
{
ψ(0) + (ψ′(0)− 2)z − ψ′(0)z2

}
(3.5)

and the optimal migration distance is then172

z∗ = max

{
0,

1

2
− 1

ψ′(0)

}
. (3.6)

So if the resource gradient is linear, the optimal response is to not move (be

resident) unless the dimensionless resource gradient ψ′(0) > 2, but from there, the174

steeper the resource gradient, the farther an individual should move. Reverting to

dimensional variables, not migrating (z = 0) is locally optimal if176

ψ′(0) < 2fumax or ψ′(0) = 2fumax and ψ′′(0) < 2fumax. (3.7)

We can further analyze Eq. (3.4) to characterize the properties of the optima

under different conditions. By differentiating the reproductive value to identify178

local maxima, we find z∗ must solve the transcendental equation

Ak(1− 2z) = 4 cosh(k(z − s)) + 4. (3.8)

At the movement extremes, z = 1/2 is never a local maximum, but z = 0 is a local180

maximum if

A <
4 + 4 cosh(ks)

k
(3.9)

Heuristically, the resource cline promotes migration if it is close enough to the182

breeding ground and large enough. Since hyperbolic cosine is convex, no more than

two interior local extreme solving Eq. (3.8) can ever coexist. Using calculus184

techniques, we can determine that two local maxima can only coexist when

A >
8k

k2 − 4
. (3.10)

The bifurcation structure of the extremes of the reproductive value are186

summarized in Figure 4. If the resource cline is weak (A is small), then the optimal
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strategy is not to move. If the resource cline is large (A is large) and sharp (k is188

large), then as we vary the cline position s, there will be a transitional regime

between migration and residency where 2 different local maxima will appear as the190

cline drifts away from the breeding site (see Figure 4). In between, there is a region

where there is always a unique globally optimal movement strategy (see Figure 4).192

3.1. Neutral resource distributions

The one other informative special resource distribution is the evolutionarily194

neutral model. When directly differentiating Eq. (3.3) with respect to the

maximum migration distance, we find that at the optimum,196

ψ′(z∗) =
2

1− 2z∗
. (3.11)

This ordinary differential equation has general solutions

ψneutral(x) := C − ln(1− 2x) (3.12)

for any constant C. These solutions correspond to a family of perfectly neutral198

static resource distributions. Every migration of the form of Eq. (3.2) has the same

fitness for z ∈ [0, 1/2). The singularity at z = 1/2 is an indicator that optimal200

migration is always less than half the maximum distance an individual can travel in

a year. One of the implications of ψneutral(x;C) is that for any other static smooth202

resource distribution ψ(x) such that ψ′′(x) < ψ′′neutral(x), any locally optimal

migration strategy is also globally optimal.204

We show below that the neutral resource distribution is a particularly useful

idea when trying to understand how our density-independent analysis will extend206

to density-dependent situations.
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Fig. 4.— (a) The A×k parameter space (in hyperbolic coordinates) can be dissected

into 3 regions. In region X, the cost of movement always outweighs the potential

resource gains, and the best strategy is reside in the breeding-ground year-round

(x(t) = 0 for all t). In region Y , the optimal strategy depends on the position of

the resource cline, but there is always just 1 locally and globally optimal strategy

(b); when the cline is close to the breeding ground (s ≈ 0), the best strategy will be

migration, but when the cline is far from the breeding ground (|s| � 0), movement

costs out-weight resource gains. In region Z, the best movement strategy still de-

pends on the cline position s (see c), but there may be two local resource maxima.

In the case of (c), for shift values s ∈ (0.55, 0.79), there are two local maxima and

one saddle point. Parameter values: (b) A = 20, k = 1; (c) A = 50, k = 10.
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4. Density-dependence208

Although our analysis is density-independent, we can consider

density-dependent extensions of the model. For example, if migrant and resident210

populations are regulated independently by density-dependent mortality that

occurs between breeding events (i.e. “soft” selection (Christiansen 1975; Débarre212

and Gandon 2011), the coexistence of migrant and resident types when the cline is

steep is preserved. On the other hand, if density-dependence acts uniformly across214

the population (“hard” selection) or is exerted at the time of reproduction,

migrants and residents may be directly competing, and only the most fit216

subpopulation will persist. In this particular case, individuals might increase their

reproductive success by returning to breed less often. Allowing this would not alter218

our results. Overall, these results support previous findings (Kaitala et al. 1993)

that partial non-breeding migrations can occur without environmental220

stochasticity, as long as density-dependent regulation of migrants and non-migrants

occurs during the non-breeding season.222

If population proliferation is primarily constrained by resource depletion, then

the resource gradient will depend on the grazing pattern of the population.224

Suppose, for example, that the resource distribution is in quasi-steady-state

equilibrium with the population. Under the pessimism principle (Mylius and226

Diekmann 1995), the population should expand until resource supplies have been

pushed down to levels where they are just sufficient to sustain the population. This228

level will be given by maxz Rd(z) = 1. If there are no constraints causing

inefficiency in strategy allocations, then under an ideal distribution, each strategy z230

will be used at the frequency for which Rd(z) = 1.

The actual frequency of use of each supported strategy remains unknown. It232

could depend on the explicit resource dynamics. Our solutions only apply to

scenarios where the resource distribution is in approximate quasi-steady-state234

equilibrium with population densities. The problem will be much more difficult to



– 17 –

analyze when time-dynamics are considered for the resource, and may introduce236

resonance features into the evolution dynamics of migration. An example

preliminary theory for such a case is provided in Appendix A, but this is a topic238

needing future exploration.

5. Discussion240

Here we have used optimal control methods to exactly solve for the best

movement path, given specific costs from movement and payoff from different242

resource distributions. Dimensional analysis reveals that the importance spatial

variation in resource distributions depends on the speed and efficiency with which244

animals can access the resources. We have then shown that changing the shape of

the resource distribution alone shifts whether purely migration, purely residency, or246

both are favored as the optimal movement pattern. The coexistence of movement

types can be interpreted in two ways.248

First, coexistence of migrant and resident types can be interpreted as partial

migration, where both types occur simultaneously within the same population. Our250

model corresponds to the case of partial non-breeding migration where migrants

and residents share a breeding site. Unlike all previous models of partial migration,252

our model is spatially explicit and directly accounts for the types of ecological

conditions that select on movement strategies.254

Second, coexistence of migrant and resident types can be interpreted as

coexistence of two species with different movement types on a single resource. In256

this case it is possible that a branching of movement types was a precursor to the

speciation event, a process that has been suggested in the case of coexistence of258

dispersal types (Doebeli and Ruxton 1997; Mathias et al. 2001; Bode et al. 2011).

While our results provide some insight, a number of open problems remain,260

particularly with respect to the evolution of movement when populations
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themselves alter their environments. A simple special case is proposed in Section A,262

but even basic mathematical results for it remain unknown. Computational

experiments and mathematical analysis of spatially-explicit scenarios could greatly264

deepen our theoretical understanding. Computational experiments could also help

us understand the relationship between the optimal strategies we’ve identified the266

time-dependent and path-dependent aspects of evolution and speciation can lead

up to these optima. It could also be useful to expand on our approaches so that268

they may approximate the current situations of extant species and anticipate

situations where adaptive responses to climate change will be more difficult.270

This research was supported by NSF grants DMS-0920822 to TCR and

OISE-1159097 to AKS. The calculations in this paper were obtained using the272

sympy and scipy libraries for python (SymPy Development Team 2013; Jones et al.

2001-; Python Software Foundation 2010-). Graphics were prepared using Gnuplot274

and Matplotlib. (Williams et al. 2010-; Hunter 2007).

A. On ideal migration allocations276

As an example of migration theory where populations are constrained by

spatially distributed resource depletion, we make use of the concept of grazing278

pressure. Let allocation I(z) be a measure of the number of animals in the

population using each strategy migration strategy z. For every strategy z, I(z) ≥ 0.280

When animals using strategy z follow the path x(t, z) over the course of the year

and consume at a constant rate over time, the total annual grazing pressure at each282

location u will be given by the formula

p(u) :=

∫ 1/2

0

∫ 1

0

I(z)δ(u− x(t, z))dtdz (A1)

where δ() is Dirac’s delta-function (not to be confused with our discounting284

parameter δ). Assuming individuals follow migration paths of the form of Eq. (3.2),
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the annual grazing pressure can be simplified to286

p(x) = (1− 2x)I(x) + 2

∫ 1/2

x

I(z)dz. (A2)

To get further, we propose that the annual dynamics of the resource distribution

are governed by the linear difference equation288

ψt+1(x) = max{0, βψt(x) + r(x)− p(x)} (A3)

where β is the fraction of resource persisting from the previous season, r(x) is the

annual resource inflow at all locations x, and p(x) is the annual grazing pressure290

consuming resource. Over time, the resource distribution will converge to the

equilibrium292

ψ(x) = max

{
0,
r(x)− p(x)

1− β

}
. (A4)

The reproductive success of a strategy z under a equilibrium resource distribution

ψ can be determined from Eq. (3.3). So, from an allocation, we can determine the294

grazing pressure over space. From the grazing pressure, we can determine the

equilibrium resource distribution. And from the equilibrium resource distribution,296

we can determine the discounted reproductive success of each strategy. Thus, the

discounted reproductive success in the presence of resource depletion can be298

thought of as a function of the strategy allocation (Rd(z; I)).

Under the pessimism principle (Mylius and Diekmann 1995), a stable300

allocation I∗ is one for which no strategy can be adopted to invade successfully

(maxz Rd(z; I∗) = 1) and no unsustainable strategy is used (for every strategy z302

where I∗(z) > 0, Rd(z; I∗) = 1). These conditions provide a set of equations from

which we can attempt to identify a stable allocation I∗. General results as to when304

a stable allocation can be found, and if there are more than one for a given system,

are unknown. However, using elementary fixed-point methods, we can calculate306

some elementary examples of stable allocations (see Figures 5-7).
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Fig. 5.— Figure of a stable strategy allocation I∗(z) when resource accumulates

according to a linear gradient (r(x) = 2−4x). Non-migratory strategies are the most

frequently used. Parameters β = 0.4, δ = 0.1.

0.0 0.1 0.2 0.3 0.4 0.50.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Re
so

ur
ce

 in
flo

w
 r(
x
)

0.0 0.1 0.2 0.3 0.4 0.5
Position (x)

0.0
0.5
1.0
1.5
2.0
2.5

Re
so

ur
ce

 ψ̄
(x

;
I
∗
)

0.0 0.1 0.2 0.3 0.4 0.50.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Al
lo

ca
tio

n 
I
∗
(z

)

0.0 0.1 0.2 0.3 0.4 0.5
Strategy (z)

0.0
0.2
0.4
0.6
0.8
1.0
1.2

R
d
(z

;
I
∗
)

Fig. 6.— Figure of a stable strategy allocation I∗(z) when resource accumulates

according to an increasing linear cline (r(x) = 3x). The allocation is dominated by

long migrations. Parameters β = 0.4, δ = 0.1.
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Fig. 7.— Figure of a stable strategy allocation I∗(z) when resource accumulates

unimodally (r(x) = 60x − 150x2). Only strategies that migrate an intermediate

distance are allocated. Parameters β = 0.4, δ = 0.1.
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